在Pandas 2.0发布以后,我们发布过一些评测的文章,这次我们看看,除了Pandas以外,常用的两个都是为了大数据处理的并行数据框架的对比测试。
(资料图片仅供参考)
本文我们使用两个类似的脚本来执行提取、转换和加载(ETL)过程。
测试内容这两个脚本主要功能包括:
从两个parquet 文件中提取数据,对于小型数据集,变量path1将为“yellow_tripdata/ yellow_tripdata_2014-01”,对于中等大小的数据集,变量path1将是“yellow_tripdata/yellow_tripdata”。对于大数据集,变量path1将是“yellow_tripdata/yellow_tripdata*.parquet”;
进行数据转换:a)连接两个DF,b)根据PULocationID计算行程距离的平均值,c)只选择某些条件的行,d)将步骤b的值四舍五入为2位小数,e)将列“trip_distance”重命名为“mean_trip_distance”,f)对列“mean_trip_distance”进行排序。
将最终的结果保存到新的文件。
脚本1、Polars数据加载读取
def extraction(): """ Extract two datasets from parquet files """ path1="yellow_tripdata/yellow_tripdata_2014-01.parquet" df_trips= pl_read_parquet(path1,) path2 = "taxi+_zone_lookup.parquet" df_zone = pl_read_parquet(path2,) return df_trips, df_zone def pl_read_parquet(path, ): """ Converting parquet file into Polars dataframe """ df= pl.scan_parquet(path,) return df
转换函数
def transformation(df_trips, df_zone): """ Proceed to several transformations """ df_trips= mean_test_speed_pl(df_trips, ) df = df_trips.join(df_zone,how="inner", left_on="PULocationID", right_on="LocationID",) df = df.select(["Borough","Zone","trip_distance",]) df = get_Queens_test_speed_pd(df) df = round_column(df, "trip_distance",2) df = rename_column(df, "trip_distance","mean_trip_distance") df = sort_by_columns_desc(df, "mean_trip_distance") return df def mean_test_speed_pl(df_pl,): """ Getting Mean per PULocationID """ df_pl = df_pl.groupby("PULocationID").agg(pl.col(["trip_distance",]).mean()) return df_pl def get_Queens_test_speed_pd(df_pl): """ Only getting Borough in Queens """ df_pl = df_pl.filter(pl.col("Borough")=="Queens") return df_pl def round_column(df, column,to_round): """ Round numbers on columns """ df = df.with_columns(pl.col(column).round(to_round)) return df def rename_column(df, column_old, column_new): """ Renaming columns """ df = df.rename({column_old: column_new}) return df def sort_by_columns_desc(df, column): """ Sort by column """ df = df.sort(column, descending=True) return df
保存
def loading_into_parquet(df_pl): """ Save dataframe in parquet """ df_pl.collect(streaming=True).write_parquet(f"yellow_tripdata_pl.parquet")
其他代码
import polars as pl import time def pl_read_parquet(path, ): """ Converting parquet file into Polars dataframe """ df= pl.scan_parquet(path,) return df def mean_test_speed_pl(df_pl,): """ Getting Mean per PULocationID """ df_pl = df_pl.groupby("PULocationID").agg(pl.col(["trip_distance",]).mean()) return df_pl def get_Queens_test_speed_pd(df_pl): """ Only getting Borough in Queens """ df_pl = df_pl.filter(pl.col("Borough")=="Queens") return df_pl def round_column(df, column,to_round): """ Round numbers on columns """ df = df.with_columns(pl.col(column).round(to_round)) return df def rename_column(df, column_old, column_new): """ Renaming columns """ df = df.rename({column_old: column_new}) return df def sort_by_columns_desc(df, column): """ Sort by column """ df = df.sort(column, descending=True) return df def main(): print(f"Starting ETL for Polars") start_time = time.perf_counter() print("Extracting...") df_trips, df_zone =extraction() end_extract=time.perf_counter() time_extract =end_extract- start_time print(f"Extraction Parquet end in {round(time_extract,5)} seconds") print("Transforming...") df = transformation(df_trips, df_zone) end_transform = time.perf_counter() time_transformation =time.perf_counter() - end_extract print(f"Transformation end in {round(time_transformation,5)} seconds") print("Loading...") loading_into_parquet(df,) load_transformation =time.perf_counter() - end_transform print(f"Loading end in {round(load_transformation,5)} seconds") print(f"End ETL for Polars in {str(time.perf_counter()-start_time)}") if __name__ == "__main__": main()
2、Dask函数功能与上面一样,所以我们把代码整合在一起:
import dask.dataframe as dd from dask.distributed import Client import time def extraction(): path1 = "yellow_tripdata/yellow_tripdata_2014-01.parquet" df_trips = dd.read_parquet(path1) path2 = "taxi+_zone_lookup.parquet" df_zone = dd.read_parquet(path2) return df_trips, df_zone def transformation(df_trips, df_zone): df_trips = mean_test_speed_dask(df_trips) df = df_trips.merge(df_zone, how="inner", left_on="PULocationID", right_on="LocationID") df = df[["Borough", "Zone", "trip_distance"]] df = get_Queens_test_speed_dask(df) df = round_column(df, "trip_distance", 2) df = rename_column(df, "trip_distance", "mean_trip_distance") df = sort_by_columns_desc(df, "mean_trip_distance") return df def loading_into_parquet(df_dask): df_dask.to_parquet("yellow_tripdata_dask.parquet", engine="fastparquet") def mean_test_speed_dask(df_dask): df_dask = df_dask.groupby("PULocationID").agg({"trip_distance": "mean"}) return df_dask def get_Queens_test_speed_dask(df_dask): df_dask = df_dask[df_dask["Borough"] == "Queens"] return df_dask def round_column(df, column, to_round): df[column] = df[column].round(to_round) return df def rename_column(df, column_old, column_new): df = df.rename(columns={column_old: column_new}) return df def sort_by_columns_desc(df, column): df = df.sort_values(column, ascending=False) return df def main(): print("Starting ETL for Dask") start_time = time.perf_counter() client = Client() # Start Dask Client df_trips, df_zone = extraction() end_extract = time.perf_counter() time_extract = end_extract - start_time print(f"Extraction Parquet end in {round(time_extract, 5)} seconds") print("Transforming...") df = transformation(df_trips, df_zone) end_transform = time.perf_counter() time_transformation = time.perf_counter() - end_extract print(f"Transformation end in {round(time_transformation, 5)} seconds") print("Loading...") loading_into_parquet(df) load_transformation = time.perf_counter() - end_transform print(f"Loading end in {round(load_transformation, 5)} seconds") print(f"End ETL for Dask in {str(time.perf_counter() - start_time)}") client.close() # Close Dask Client if __name__ == "__main__": main()
测试结果对比1、小数据集我们使用164 Mb的数据集,这样大小的数据集对我们来说比较小,在日常中也时非常常见的。
下面是每个库运行五次的结果:
Polars
Dask
2、中等数据集我们使用1.1 Gb的数据集,这种类型的数据集是GB级别,虽然可以完整的加载到内存中,但是数据体量要比小数据集大很多。
Polars
Dask
3、大数据集我们使用一个8gb的数据集,这样大的数据集可能一次性加载不到内存中,需要框架的处理。
Polars
Dask
总结从结果中可以看出,Polars和Dask都可以使用惰性求值。所以读取和转换非常快,执行它们的时间几乎不随数据集大小而变化;
可以看到这两个库都非常擅长处理中等规模的数据集。
由于polar和Dask都是使用惰性运行的,所以下面展示了完整ETL的结果(平均运行5次)。
Polars在小型数据集和中型数据集的测试中都取得了胜利。但是,Dask在大型数据集上的平均时间性能为26秒。
这可能和Dask的并行计算优化有关,因为官方的文档说“Dask任务的运行速度比Spark ETL查询快三倍,并且使用更少的CPU资源”。
上面是测试使用的电脑配置,Dask在计算时占用的CPU更多,可以说并行性能更好。